Introduction

The Centers for Disease Control and Prevention (CDC) estimates that one in 10 people are sensitive to natural rubber latex. Among individuals with latex allergy, repeated exposure to latex results in sensitization and increased risk of allergic reactions. High risk groups for latex sensitization include healthcare workers and patients with early and repeated exposures to latex, such as infants with congenital spina bifida having multiple surgeries. Latex allergic reactions can range from mild skin rashes to severe and life-threatening anaphylactic shock. Since no known cure for latex allergy exists, avoidance of latex exposure is the only protection. Healthcare facilities have taken a variety of approaches to reducing both worker and patient exposure to latex. These include replacing products made of natural rubber latex products with those made of a synthetic alternative. Some facilities have created latex-free procedure rooms, operating rooms or special procedure carts, while others have attempted to move to an entirely latex-free hospital.

A federal law took effect in 1997 that requires medical products with latex to specify on the product and packaging that it contains latex. However, there is no requirement that products be labeled “latex free,” and so creating a latex-free environment can prove to be a challenge. Many hospitals have used the term “latex-safe” to describe environments designed for latex-sensitive patients and staff, recognizing that all latex might not have been eliminated. Serious reaction to latex and related health problems among latex sensitive individuals can be minimized or prevented with a thorough understanding of the risks of latex allergies and the implementation of strategies to reduce these risks.

History of latex allergies

The first reported case of a latex allergy in the medical literature was in 1979. Since then, reports of reactions to latex have increased significantly. Between 1988 and 1992, the FDA received more than 1000 reports of latex allergic reactions. Most of the cases were associated with use of gloves or latex balloon-tipped barium enema catheters. Fifteen deaths occurred, all of which were related to the use of the latex balloon-tipped catheter. The deaths prompted the CDC and the FDA to issue a medical alert and recall these products.

Products containing latex

<table>
<thead>
<tr>
<th>General Medical-Surgical</th>
<th>General Medical-Surgical (cont.)</th>
<th>Anesthesia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhesive tape</td>
<td>IV access: injection ports, bags, burterol ports, some needleless systems, adapters</td>
<td>Breathing circuits</td>
</tr>
<tr>
<td>Anesthesia, ventilator</td>
<td>Oxygen masks, cannulas</td>
<td>Endotracheal tubes</td>
</tr>
<tr>
<td>Circuits, bags</td>
<td>Reservoir breathing bags</td>
<td>Epidural catheter injection adapters</td>
</tr>
<tr>
<td>Bed protectors (rubber)</td>
<td>Stethoscope tubing</td>
<td>Induction masks</td>
</tr>
<tr>
<td>Bulb syringes, e.g., feeding</td>
<td>Suction catheters</td>
<td>Nasal-pharyngeal airways</td>
</tr>
<tr>
<td>Catheters: condom (indwelling urinary)</td>
<td>Syringes</td>
<td>Teeth protectors</td>
</tr>
<tr>
<td>Blood pressure cuffs</td>
<td>Tourniquets</td>
<td>Ventilator bellows</td>
</tr>
<tr>
<td>Examination gloves</td>
<td>Urinary catheters, bags, straps</td>
<td>Dental</td>
</tr>
<tr>
<td>Elastic bandages</td>
<td>Venous/arterial catheters</td>
<td>Orthodontic elastic bands</td>
</tr>
<tr>
<td>Electrode pads</td>
<td>Wheelchair tires</td>
<td>Dental dams</td>
</tr>
<tr>
<td>Endotracheal tubing</td>
<td></td>
<td>Bite blocks</td>
</tr>
<tr>
<td>Face masks and straps</td>
<td></td>
<td>Prophylaxis cups</td>
</tr>
<tr>
<td>Gloves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemodialyzers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Routes of latex exposure

Latex exposures can occur through direct contact with the skin, mucous membranes, or bloodstream, and through inhalation of airborne latex particles. The protein responsible for latex allergies has been shown to fasten to powder that is used on some latex gloves. When powdered gloves are removed, latex protein/powder particles get into the air, where they can be inhaled and come in contact with mucous membranes in the eyes, nose, and mouth.

Parental exposures are those in which latex may enter the bloodstream directly. These exposures have the potential for the most serious reactions. Parenteral exposure can occur during surgery when latex devices are used on open tissue. It can also occur following injections with needles that have punctured a latex rubber stopper on a medication vial.

Inhalation of airborne latex particles can occur when latex proteins combine with the powder or cornstarch from the gloves and form aerosolized particles that become airborne. These particles get into eyes, nose, mouth, or lungs, where protein may be absorbed through these moist mucous membranes. Studies have shown that airborne latex particles are significantly higher in areas and departments in healthcare settings where powdered latex gloves are used. These particles are particularly high in personal breathing zones of the person wearing latex gloves. These aerosolized particles can also attach to lint, dust, equipment, and even clothing, and become re-suspended into the air. There have been reports of family members with latex allergies having reactions after handling clothes worn by individuals who work in healthcare settings and were exposed to powdered latex gloves.

Latex allergy immune response

A latex allergy, also called latex sensitivity or Type I latex hypersensitivity, is an immune response following exposure of genetically predisposed individuals to the proteins in natural rubber latex. These latex proteins are the specific substances or allergens that can simulate the allergic response. More than 200 latex proteins exist, and more than 50 may have the potential to cause allergic reactions.

A person with a potential for developing a latex allergy will have an immune response when first exposed (or sensitized) to latex, although no external or physical response may be noted (asymptomatic). The immune response initiates production of latex-specific antibodies or immunoglobulins (IgE) that take part in the development of symptoms when a person is re-exposed to latex. These antibodies are also helpful in diagnosing a latex allergy.

An individual with an allergy to latex becomes increasingly “sensitized” with each subsequent exposure, increasing the potential for the development of a reaction (physical symptoms) following exposure. These symptoms can range from itching (pruritis) to the most severe and potentially fatal reaction (anaphylactic shock), a collapse of the cardiac and respiratory system. The amount of latex exposure needed to produce sensitization or an allergic reaction is unknown. However, reductions in exposure to latex proteins have been reported to be associated with decreased sensitization and symptoms.

Signs and symptoms of latex allergy

Irritation

The most common reported reaction to contact with latex is an irritation known as irritant contact dermatitis. This is not an allergy to latex but rather a non-allergic inflammation that occurs when the skin surface becomes dry and irritated from other sources. This reaction is common among healthcare workers that wear gloves with irritation of the hands that may be related to sweating under the gloves, frequent hand washing, drying with rough paper towels, use of certain hand soaps or detergents, exposure to ultraviolet light, or extremes in climate (e.g., cold, hot, dry, or windy). The skin is then exposed to glove powder. The combined effect of dry, irritated hands and exposure to latex gloves causes a reaction. Within minutes of donning latex gloves, the wearer experiences pain, stinging, and burning, and the skin becomes reddened. With repeated exposures, the skin becomes crusty and thickened, with dry bumps and scabs that may peel or form fissures or cracks.

Allergic contact dermatitis

This is a reaction to the chemical additives used during the manufacturing process. The chemicals added to latex can cause a skin rash 24 to 48 hours after contact. The rash usually starts on the parts of the skin that have come in contact with latex, and then may spread to other areas. It may also be accompanied by oozing blisters.

For healthcare workers wearing gloves, this type of reaction is an allergic response to the chemical additives in the latex gloves and NOT to the latex glove itself. Almost five percent of the final weight of latex gloves is added chemicals used as accelerators and antioxidants, emulsifiers, stabilizers, colorants, softeners, biocides, ultraviolet light absorbers, or fragrances. This allergic reaction is similar to what happens to the skin after exposure to poison ivy and may have redness, itching, scaling, peeling, hard bumps, or fluid-filled blisters and oozing sores. The height of the reaction occurs one to three days after contact and may spread beyond the glove line and up the arm. With continued latex exposure, the skin can develop a cracked and thickened appearance.

Once an individual has an allergic reaction to a specific chemical additive and is “sensitized,” a similar reaction may occur after use of any product with the same chemical. Generally, allergic dermatitis conditions do not progress to latex
allergies However, it may be difficult to differentiate irritant reactions from allergic contact dermatitis reactions. Itching, dryness, erythema, bleeding, or scaling of the hands are manifestations of both types. Neither of the types of local reactions are good predictors of latex allergy.

Hypersensitivity immune system response

This response is an actual latex allergy. It occurs when the immune system reacts to proteins found in natural rubber latex.

The symptoms of true latex allergy or hypersensitivity usually occur immediately or within one hour following cutaneous, mucous membrane, parenteral, or airborne exposure to latex in sensitized individuals. Reactions can also occur as long as eight hours after exposure. The symptoms vary widely and mild episodes may involve skin flushing, itching, or tingling with hives that have blanched or white centers. Skin at the site of contact with latex appears swollen and tight. Other reactions might include symptoms similar to hay fever, such as sneezing, runny nose, itchy eyes, and more severe asthma-like symptoms (wheezing, difficulty breathing, shortness of breath). Individuals genetically capable of developing a latex allergy may not have symptoms when they first come in contact with latex. The body must reach a certain level of sensitivity before symptoms appear. The length of time until that level is achieved depends upon the individual’s genetic make-up, the amount of allergen released from the product, the tissue in contact with the allergen (i.e., mucous membrane versus intact skin), and the frequency and total number of exposures.

Once the reactions occur, they will continue to erupt with each subsequent latex exposure, providing that the level of allergen is sufficiently high. The symptoms may vary, depending on the type of exposure. For example, entering an area of the hospital where powder latex gloves are used could cause sneezing, itching, or wheezing from exposure to airborne latex particles. Having a dental procedure when latex is used and directly touches the mucous membranes in the mouth could cause a more serious reaction. Sensitized healthcare workers may continue to have symptoms despite using non-latex gloves and other equipment if they work in areas where latex is being used, particularly powder latex gloves. These areas include the operating room or labor and delivery suites. Conversely, allergic individuals may be able to work without incident if they wear synthetic gloves themselves and work in environments sufficiently low in allergen. Colleagues of these individuals may wear powder-free latex gloves.

Anaphylactic shock

The most severe and potentially life-threatening reaction is anaphylactic shock, which can cause respiratory and cardiac failure, and in rare instances, death. This reaction is a systemic (or total body) reaction to latex. Systemic symptoms that may indicate a serious latex allergy include nausea, abdominal pain, rapid heart rate, generalized hives, shortness of breath, drop in blood pressure, and fainting. If any of these symptoms develop following an exposure to latex, medical treatment must be initiated immediately.

Symptoms to differentiate types of reactions

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Irritation</th>
<th>Allergic dermatitis</th>
<th>Latex hypersensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical terminology</td>
<td>Irritant contact dermatitis</td>
<td>Type IV delayed hypersensitivity; allergic contact dermatitis</td>
<td>Type I immediate hypersensitivity; IgE-mediated hypersensitivity</td>
</tr>
<tr>
<td>Timing of onset</td>
<td>Minutes to hours</td>
<td>1 to 3 days</td>
<td>Minutes to 1 hour</td>
</tr>
<tr>
<td>Description of sensation</td>
<td>Pain, burning, stinging</td>
<td>Itching first, then pain as skin breaks down</td>
<td>Flush, itching, tingling</td>
</tr>
<tr>
<td>Skin appearance</td>
<td>Redness, hard crusting, thickened skin, scabs, dry bumps, peeling; skin appears glazed or scalded</td>
<td>Redness, itching, scaling, peeling, swelling, fluid-filled blisters and oozing sores; skin appears dry, crusted, thickened</td>
<td>Hives with blanched (white) centers; swollen; skin appears tight due to swelling</td>
</tr>
<tr>
<td>Fissures (cracks)</td>
<td>Fissures</td>
<td>More sores than fissures</td>
<td>No fissures</td>
</tr>
<tr>
<td>Rate of healing (uncovered)</td>
<td>Within 2 weeks after removal of source of irritation</td>
<td>May or may not diminish after latex avoidance</td>
<td>Symptoms reduced within hours after latex avoidance</td>
</tr>
<tr>
<td>Margin of reaction</td>
<td>Sharp and well-defined (e.g., up to edge of glove)</td>
<td>Undefined margin; may be at point of contact (e.g., under glove) or move up the arm</td>
<td>Undefined margin, may be at point of contact (e.g., under glove) or entire body</td>
</tr>
<tr>
<td>Tendency to spread</td>
<td>No spread</td>
<td>Yes; may spread beyond contact area</td>
<td>Yes; may spread beyond contact area</td>
</tr>
</tbody>
</table>
Diagnosing a latex allergy

Latex allergy should be suspected in anyone who develops certain symptoms after latex exposure. The symptoms include nasal, eye, or sinus irritation, hives, shortness of breath, coughing, wheezing, or unexplained shock. A physician should evaluate any individual who is exposed to latex and experiences these symptoms, since further exposure could result in a serious allergic reaction.

Taking a complete medical history is the first step in diagnosing latex allergy. In addition, the FDA-approved AlaStat blood test can be used to determine whether an individual has latex sensitivity. The test measures the presence of the latex-specific antibody (IgE) that develops in allergic individuals in response to exposure to latex. See Other publications and resources. Some individuals with latex allergy may not always have symptoms even if their IgE test is positive. However, subsequent exposures may result in symptoms in these individuals.

Other diagnostic tools include a glove-use test or skin tests that involve scratching or pricking the skin with a drop of liquid containing latex proteins. Itching, swelling, or redness at the test site indicates a positive reaction. These tests, however, are not yet standardized. No FDA-approved materials are yet available to use in skin testing for latex allergy. Skin testing and glove-use tests should be performed only at medical centers with staff who are experienced and equipped to handle severe reactions.

Occasionally, tests may fail to confirm an individual who has a true allergy to latex, or tests may suggest latex allergy in a worker with no clinical symptoms. Therefore, a knowledgeable physician must evaluate test results. Testing is also available to diagnose allergic contact dermatitis. In one FDA-approved test, special patches containing latex chemical additives are applied to the skin and checked over several days. Itching, redness, swelling, or vesicles where the patch covered the skin indicate a positive reaction.

Suspect possible latex allergy in anyone who reports:

- History of food allergy (e.g., hives or tingling in mouth) after eating avocados, kiwi fruit, chestnuts, potatoes, tomatoes, bananas, or any other food.
- History of allergic symptoms such as itching, hives, swelling of hands or eyes, watery eyes/nose, sneezing, wheezing, and shortness of breath in association with use of gloves, condoms, diaphragms, balloons, or any other natural rubber latex-containing device. History of allergic symptoms during medical or surgical procedures or exams such as dental, vaginal, rectal, or barium enema x-ray procedures.
- Any unexplained allergic or anaphylactic reaction during a medical or surgical procedure.
- History of severe or worsening latex glove-induced hand irritation or eczema, hives, watery eyes or nose, or asthma-like symptoms such as wheezing or shortness of breath, especially among healthcare workers.
- History of multiple surgeries as an infant (especially in children with congenital anomalies such as spina bifida).

Prevention and control strategies

Patients

Patients should be assessed to determine if they have a known latex allergy or are at high risk for a latex allergy and in need of an evaluation to determine the type of latex precautions or latex-free environment that may be needed. This might include might include the use of a latex-free products or procedure trays, latex-safe hospital room, or latex-free...
procedure or operating room. The development of latex allergy precautions in the health care settings involves a multidisciplinary approach to ensure that all diagnostic and therapeutic procedures and clinical care are provided in a latex-safe environment.

Collaboration in developing these latex allergy precautions should include the medical and nursing staff, material management, operating room, laboratory, pharmacy, dietary and environmental services. There should be clear documentation of a patient’s latex allergy in the medical record, on the patient identification band, and other places where appropriate, e.g., signage in the patient’s room.

Two sample latex allergy precaution policies are provided that contain examples of approaches used in healthcare settings. See education and training section with sample policies.

Individuals who are latex-allergic should avoid exposure to latex. Complete avoidance is the most effective approach to preventing any allergy, although this is difficult, if not impossible, to achieve. A more realistic approach is to reduce latex exposures. Strategies to reduce exposures include the use of non-latex gloves when there is little potential for contact with infectious materials (e.g., food preparation or housekeeping) and the use of reduced latex protein, powder-free gloves when there is risk of contact with infectious materials. While there is insufficient clinical data to calculate the precise amount of extractable latex protein in a latex glove that will cause sensitization or a reaction, it is known that reduced levels of latex protein decrease the risk of sensitization. To support the identification of these gloves, the FDA permits label claims of reduced latex protein (for example, gloves with 50 micrograms or less of total water extractable latex protein per gram).

Other strategies include good housekeeping practices to remove latex-containing dust from the workplace through identification of areas contaminated with latex dust, and the scheduling of these areas for frequent cleaning (including upholstery, carpets, ventilation ducts, and plenums). Ventilation filters and vacuum bags should also be changed frequently in latex-contaminated areas.

Workers should receive training and education about the risks associated with latex allergies, signs and symptoms of reactions, and methods to reduce risks of exposure. Essential strategies for preventing long-term, serious health effects include periodic screening of high-risk workers for symptoms of latex allergy and alterations in the work place to minimize or eliminate exposure to latex for symptomatic workers. The information obtained from periodic screening of workers and identification of workers with latex allergies should be used for evaluation and revision of current prevention strategies.

Once a worker becomes allergic to latex, special precautions are needed to prevent exposures at work as well as during medical or dental care. Many facilities maintain latex-safe areas for affected patients and workers by using non-latex gloves for workers and non-latex medical devices and supplies for patients. However, avoid using terms such as "latex-free environment" or other terms that lead one to believe there is no latex present. Given the large number of items containing latex in hospitals, it is very difficult to maintain a completely latex-free environment. Many healthcare facilities seek to identify latex-free products in order to limit exposures to allergic individuals. See Premier’s Supply Chain Advisor (SCA).

When latex-sensitive employees are working in areas not designated as "latex-safe" and are potentially exposed to infectious agents, they must still wear synthetic gloves. Intact synthetic or latex gloves provide a barrier against exposure. However, some non-latex gloves (e.g., vinyl) have been shown to lose their barrier effectiveness from "break down" after rigorous use and/or contact with alcohol. To reduce the risk of exposing others to aerosolized latex protein allergens, non-latex allergic individuals should wear a non-latex (e.g., synthetic) glove with appropriate barrier protection or wear low-protein, powder-free latex gloves. Workers with systemic reactions to latex exposures may need to be reassigned to work areas with limited latex exposure. See discussion below for other considerations related to colored gloves.

Colored gloves

There currently are no standards, guidelines, or regulations regarding the color-coding of exam or surgeons’ gloves in healthcare. However, traditionally, latex examination gloves have been flesh- or bisque-colored. In an effort to differentiate between latex and non-latex gloves, manufacturers began offering the non-latex (for example, nitrile) gloves in bright colors like purple and green, a particular advantage for the worker with a latex allergy. Very recently, in an effort to develop innovative products, manufacturers began offering both latex and non-latex in multiple colors, including purple, lilac, blue, green, and pink. Dental gloves may even be marketed as "flavor" colors such as grape, mint, and strawberry. Although this new trend of brightly colored latex gloves may have initial appeal, there is growing concern that it may have unintended outcomes for workers and patients with latex allergies who have relied on the color of gloves to distinguish between them.

The concern is that workers with latex allergies may reach for gloves that they believe are latex-free because they are brightly colored, when in fact the gloves are really latex, causing a serious and potentially life-threatening adverse reaction. This potential problem is heightened when there are a variety of gloves from numerous companies with varying glove colors for latex and non-latex.

Although the FDA requires labeling of medical products that contain latex, many workers may not read the label prior to glove use because they have relied on the color. Also, clinical staff may use gloves that have been removed from the original box and placed in a dispenser or gloves from a dispenser that covers the labeling on the box. There is also a serious risk for the patient with a latex allergy if the clinician mistakenly uses latex gloves during patient care.
Latex allergy prevention

Reduced risk of latex allergies associated with glove color

The issue of glove color needs to be addressed by each healthcare organization as it develops and revises its glove use and latex allergy prevention policies. Strategies and issues to consider include:

- Type of gloves used in the facility, including the designated colors of both latex and non-latex.
- Staff’s preferences of glove color.
- Staff’s perceptions of which gloves are latex and non-latex based on the colors.
- Reported allergic latex reactions in patients or workers because of selection of incorrect glove based on color.
- User input on need for standardization throughout the facility/system of the color for each specific glove type.
- Frequency and type of education needed for staff on any changes in glove colors and assessment of the success of this education to reduce risk (consider staff turnover, contract/contingency workers, and visiting staff).
- Inclusion of the criteria of glove color in all evaluations and selections of gloves.

Management of workers with allergic reactions

Irritation

Determine and eliminate cause of irritation. Notify Employee Health Service:

- Restriction from direct patient care may be recommended if hands have broken skin or open, draining sores. This reduces the risk of acquiring or transmitting infection until the skin heals.
- Allow hands to heal. Steroid creams and moisturizes will repair the skin and reestablish integrity within two weeks (Note: Oil-based lotions may deteriorate gloves, and must not be worn under them.)
- Initiate a handwashing regime to reduce skin irritation.
- Consider glove liners, which may be beneficial.
- If irritation is related to powder, consider powder-free gloves.
- Glove option: Consider gloves which may have reduced chemical additives.

Allergic Dermatitis (Type IV)

Determine and eliminate cause of chemical-based allergic reaction. Notify Employee Health Service:

- Restriction from direct patient care may be recommended if hands have broken skin; open, draining sores; or fluid-filled blisters This reduces the risk of acquiring bloodborne infection until the skin is healed.
- Allow hands to heal.
- Consider seeking consultation with a dermatologist or an allergist for specific diagnosis of the type of allergy and specific treatment of skin condition.
- Initiate a hand-washing regime to reduce skin irritation.
- Glove liners may be beneficial until hands heal.
- Glove option: If diagnosis is chemical allergy, consider vinyl or other synthetic gloves. There are gloves specially made for chemical irritation that may not have the same chemical additives (Note: Vinyl and other synthetic gloves are also made with chemicals to which individuals with type IV allergies may also develop symptoms.)

Latex Allergy (Type I)

If a latex allergy is suspected:

Remove latex gloves and wash hands immediately. Notify Employee Health Service:

- Restriction from direct patient care may be recommended if hands have broken skin; open, draining sores; or fluid-filled blisters. This reduces the risk of acquiring bloodborne infection until hands are healed.
- Glove option: non-latex glove.
- Have Employee Health Service assess work environment risk.
- Seek diagnosis and medical management from a physician such as an allergist or immunologist.

Responsibilities of employers

Develop an institutional protocol for evaluating and managing personnel with suspected or known latex allergy:

- Include mechanism for monitoring worker complaints and reported symptoms.
- Survey personnel for symptoms suggestive of latex allergy during pre-employment and periodic evaluations.
- Use information obtained from periodic screening of workers and identification of workers with latex allergies for evaluation and revision of current prevention strategies.
- Refer workers with positive history to physician with expertise in latex allergies for diagnosis and medical management.
- Consider active screening and allergy testing of high-risk workers.
- Record serious latex reactions resulting in medical treatment or loss of work time on the OSHA 200 log.
- Consider suspected or diagnosed case of “latex allergy” a significant event and investigate the cause of the exposure.
- Require purchasing departments to consider barrier effectiveness and worker acceptance when selecting gloves.
- Provide workers with non-latex gloves to use when there is little potential for contact with infectious materials.
Latex allergy prevention

- Consider targeted substitution of non-latex gloves (or low-protein, powder-free latex) in areas of the facility where use is high or in areas where large numbers of personnel have developed latex allergy.
- If latex gloves are chosen, provide powder-free gloves with reduced latex protein.
- Provide workers with a list of non-latex substitutes available in the organization.
- Avoid the use of all latex products for personnel with a history of systemic reactions to latex.
- Create a "latex safe" zone for highly allergic workers (and patients), such as specially designated areas where only non-powdered latex and non-latex gloves and medical devices are used.
- Remove symptomatic workers from latex exposure as much as possible to prevent long-term serious health effects.
- Latex allergic individuals must wear non-latex (e.g., synthetic gloves) and coworkers should wear synthetic or low-protein powder-free latex gloves.
- Provide education and training about risks associated with latex allergies, symptoms, and methods of prevention and exposure control.

Guidelines for workers with suspected latex allergies

For healthcare workers in high-risk groups or when testing has determined latex sensitivity without symptoms:
- Become very familiar with the symptoms of latex allergy.
- Reduce exposures to latex at work and at home as much as possible.
- If skin rash is present, avoid contact with latex gloves.
- Select non-latex gloves.
- If latex gloves must be used, select low-protein, powder-free gloves.
- Consider working in areas where other workers are using powder-free latex gloves.

Additional precautions if latex allergy is confirmed and symptoms are present:
- Avoid contact with latex gloves and other latex-containing products in the workplace and at home.
- Avoid areas where the powder from latex gloves worn by other workers might be inhaled.
- Tell employers and healthcare providers (physicians, nurses, dentists, etc.) about the latex allergy.
- Consider wearing a medical alert bracelet.
- Change protective clothing after any latex contact. (If someone in your family has a latex allergy, change your clothing before leaving work.)
- Carefully follow physician's instructions for dealing with allergic reactions to latex.